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.28 percent, with a standard deviation of errors 0.58 and 0.84 percent for
glass- and asbestos-phenolic, respectively. The 95-percent confidence for the
mean error was 0.22 and 0.44 percent for the glass-phenolic and 0.14 and
0.42 percent for the asbestos-phenolic. Also, the activation energy was
calculated by the Flynn and Wall method. The average activation energy
values determined by the two methods agreed within 4.6 percent for both
materials.
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INTRODUCTION

The rate of decomposition of an ablative material when heated is modeled by the kinetic
rate equation. If it is assumed that the material dimensions are constant, the rate equation de-
termines the density of the remaining char. Both the rate of decomposition and char density
strongly affect the thermal performance of the material. In order to predict the thermal response,
accurate values of the kinetic parameters over the entire range of decomposition are required. In
the case of an ablative material exposed to a solid rocket motor exhaust, the heat flux may vary
widely depending upon the geometry and/or type of motor. Therefore, the effect of the heating
rate on the kinetic parameters must be known as well.

The purpose of this study was to determine an appropriate model for the rate of decom-
position of ablative materials. Friedman's method1 using multiple heating rates was chosen, since
ablative materials are subjected to widely varying heating rates. Application of this method re-
quired calculating an average activation energy for the entire thermal decomposition. The
decomposition reaction required two models, one for the initial decomposition and another for
the remainder. For these two regions, separate pre-exponential factors and apparent orders of
reaction were calculated by the technique developed by Friedman. 1 For comparison, the average
activation energy for each material determined by Friedman's method was compared to the value
obtained by the method of Flynn and Wall.2

BACKGROUND

The decomposition kinetics of solid materials have been studied by many investigators.
As a result, numerous techniques have been developed to extract the kinetic parameters from
experimental data.

Freeman and Carroll3 developed the well-known difference method and applied the
technique to determine the kinetic parameters for calcium oxalate monohydrate. The method
was later revised by Anderson and Freeman 4 and applied to the study of polystyrene and
polyethylene. Mickelson and Einhorn5 developed the ratio method to analyze thermogravimetric
data obtained for a urethane polymer. Baer, Hedges, Seader, Jayakar, and Wojcik6 heated samples
of reinforced polymers at heating rates up to 4200°C/min. The data were correlated by a
numerical technique developed by Burningham and Seader.7  Friedman' studied the
decomposition of a fiberglass-phenolic based on a technique developed for multiple heating rates.
Similarly, Flynn and Wall 2 developed a method for determining the activation energy based on
data taken at several different heating rates.

Baer, et al.6 discussed the fact that kinetic parameters obtained by methods using a single
thermogram at low heating rates do not accurately predict kinetic behavior when applied to the
higher heating rates. For this reason, the methods of Friedman I and Flynn and Wall 2 were con-
sidered in this work.

L _ t */ .. ,,st



THEORY

FRIEDMAN'S METHOD

Friedman's method is attractive for this application because the kinetic properties may be
calculated based on data taken over a wide range of heating rates. Further, the Arrhenius equation
is combined with an arbitrary function of weight. This allows more flexibility, since no prior
knowledge of the function is required. This method does, however, require measurement of the
weight loss and rate of weight loss as a function of temperature at several different heating rates.

The general form of the rate equation proposed by Friedman is

- /Wo x dW/dt = Af(W/W o ) exp (- E/RT) (1)

where

Wo  = original weight of material (mg)
dW/dt = rate of weight loss (mg/min)
A = pre-exponential factor (min- 1)
E = activation energy (cal/gm-mole)
R = gas constant (1.987 cal/gm-mole-PK)
T = temperature (*K)
f(W/W o ) = undefined function of weight

Taking the natural logarithm of both sides of Equation (1) results in

ln[-l/W o x dW/dt] = ln[Af(W/Wo)] - E/RT (2)

A linear equation may be fit to In[- l/W0 x dW/dt] as a function of l/T at constant parametric
values of W/Wo . These equations will have slopes of -E/R. Each intercept is the value of
ln[Af(W/Wo )] at the parametric value of W/Wo . Then, by defining

f(W/W o ) = [(W - Wf)/W (3)

where

n = order of reaction
W = instantaneous weight of material (mg)
Wf = final weight of charred material (mag)

and multiplying Equation (3) by A and taking the natural logarithm results in

ln[Af(W/W0 )J = InA + nln[(W- Wf)/W o1 (4)

2



The final ratio, Wf/Wo , is taken from the original thermograms. Since ln[Af(W/Wo)] is known

for various W/W 0 ratios, Equation (4) can be used to obtain values of A and n.

DISCUSSION OF FRIEDMAN TECHNIQUE

Friedman used this technique to calculate the kinetic properties for CTL9 1 -LD fiberglass-
phenolic. One activation energy was calculated for each of the 12 values of weight loss ranging

from 0.675 to 0.95 (on a glass-free basis). The average act;,ation energy was calculated from these
data. By eliminating the early weight loss (f4%) and dropping the data points above W/W ° =

0.875 and using Wf/W o = 0.61, a linear curve was fit to the data. Thus, the effective range covered
by the curve fit was approximately 0.65 < W/W 0 < 0.85, which accounted for about 50 percent
of the total weight loss. This resulted in a rather poor fit of the data at both ends of the weight
loss curve. In contrast, the requirement for the present application was to obtain a kinetic

expression applicable over the entire range of weight loss.

Three points regarding this method should be clarified. First, the equation of f(W/W o )
may take a variety of forms. For example, Goldfarb, McGuchan and Meeks8 selected
f(W/Wo) = [(W - Wf - - W:)] . This will result only in a change in the intercept lnA; i.e., a

change in the apparent pre-exponential factor.

Secondly, the kinetic parameters may be calculated by considering either the total weight
or only the resin weight of the sample. Again the activation energy and order of reaction remain

unchanged. Only the intercept lnA is affected.

Using a pre-exponential factor based only on the resin weight will result in an error, if used
in calculations where the total weight is being considered. Assuming the unknown function is
((W - Wf)/W 0 In, the two pre-exponential factors are related by:

A' = A[(W, - W)/Wo] n- 1  (5)

where

A' = pre-exponential factor (resin weight only)(min- 1 )
Ws = weight of inert material (mg)

Finally, changes in the activation energy at different degrees of conversion may be a
result of real changes due to a change in mechanism, to a change in structure of the resin, or to a

result of experimental error. If these changes are not a result of experimental error, then using
E = E(W/Wo ) would be more realistic. In many cases, however, separation of the experimental
error from real changes in E is difficult.

FLYNN AND WALL METHOD

Flynn and Wall 2 developed a convenient method to determine the activation energy from
weight loss curves measured at several heating rates. The following relationship is used to calculate

the activation energy.
3



E - (R/C) dlog /d( l/T) (6)

where

= heating rate (°C/min)
C = C(E/RT)

Plotting I/T versus log P at several weight loss ratios results in a series of straight lines with
slope Alog I/A(I/T). Using the slope and the appropriate value of C, the activation energy can be
calculated by Equation (6). Since C is a function of E/RT, the calculation of E from Equation (6)
is an iterative process. Flynn and Wall constructed a table of values for C over the range from
7 < E/RT < 60. The variation of C over this range is approximately ±3 percent. This method
is extremely attractive, since it involves only reading the temperature at a constant weight loss
from a series of thermograms at different heating rates.

EXPERIMENTAL

MATERIALS

The two ablative materials studied were supplied by Haveg Industries. As shown in Table 1,
these materials consisted of a phenol-formaldehyde resin with specified amounts of glass, asbestos,
and/or magnesium silicate added as filler.

The materials were converted to powder form by machining and were then filtered through
a No. 20 sieve. They were stored overnight in a vacuum dessicator maintained at 35°C to remove
traces of water.

Table 1. Composition of Material Tested

Matmrsal CnmPneitinn

H41NE H41D
Contents (%) (%)

Asbestos - 52.0
Glass (Si0 2 ) and

Magnesium Silicate 60.5 -
Total Filler Content 60.5 52.0
Phenol-Formaldehyde

Resin (H41 P) 39.5 48.0

Total Nonvolatiles 60.5 52.0

4



APPARATUS AND PROCEDURE

A Perkin-Elmer TGS-2 Thermogravimetric System was used, with temperature control
provided by a Perkin-Elmer System 4 Microprocessor Controller. The sample temperature was
measured with a chromel-alumel thermocouple, which was calibrated with a set of five Curie
standards in the temperature range of interest at each heating rate used.9

In order to reduce temperature gradients in the material and to ensure uniform heating,
small weights of a powdered form of the materials were used. Samples weighing 7.5±0.5 mg were
heated from 40 to 950 0 C using heating rates of 10, 20, 40, 80, 100, and 160°C/min. Both the
percentage of initial weight and the rate of weight loss were plotted directly as a function of
temperature. The samples were maintained in a nitrogen atmosphere throughout the experiment.
When the programmed temperature scan reached 9500 C, the purge gas was automatically switched
to oxygen to thermo-oxidatively degrade the remaining resin. To verify the initial weight fraction
of filler, the temperature was held at 950°C until the resin had completely degraded.

RESULTS

The original thermograms contained the temperature, derivative of weight loss, and the
fraction of weight remaining. These data were digitized at 0.01 intervals of the fraction of weight
remaining. The experimental temperatures were corrected using the Curie standard temperature

calibration for each heating rate. The thermograms were then reproduced from this data. Figures 
through 6 and 7 through 12 show the fraction of weight remaining and the rate of weight loss
as a function of temperature and time for each heating rate for H4 1 NE and H41 D, respectively.
Comparisons of the fraction of weight remaining as a function of temperature at all six heating
rates for H4 I NE and H41 D are shown in Figures 13 and 14. Figures 15 and 16 depict the relative
magnitudes of the derivative of weight loss as a function of temperature at all six heating rates
for H41NE and H41D, respectively. The digitized data for both materials are listed in the
appendix.

5
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A plot of In[- I/Wo x dW/dtl versus I/T for H41NE is shown in Figure 17. Figure 18 is a

a single plot for H41 D. The slope of each line was determined from a least-squares fit of the data.

Figure 19 shows the corresponding activation energy and intercept ln[Af(W/Wo )j at each value of
weight loss from 0.84 4 W/W o < 0.98 for H41NE. Figure 20 depicts the same information for
H41D over the range from 0.79 < W/W o < 0.97. The range of each data point is the range of
error based on the least-squares fit of the data. Values of ln[Af(W/Wo ) ] versus ln[(W - Wf)/Wo ]
for H4 1 NE are shown in Figure 21 and for H41 D in Figure 22. These figures depict the separation
of the reaction into the two regions and the corresponding least-squares fit over each region. A
pre-exponential factor and order of reaction were determined for each of these two regions. The

average activation energies determined from Figures 17 and 18 were used for both regions. Using
Flynn and Wall's method, the average activation energies for both materials were calculated based
on plots of log P versus I/T. The results are shown in Figures 23 and 24 for H41NE and H41D,
respectively. A summary of the results of the calculations for both materials is listed in Table 2.

The kinetic parameters calculated by the modified version of Friedman's method were
used in Equation (1) to calculate the fraction of weight remaining versus temperature. Each set
of parameters was applied to that portion of the weight loss curve from which it was determined.

A comparison of the results of these calculations and the experimental data for 10*C/min and
160*C/min heating rates for H41NE and H41D are shown in Figures 25 and 26, respectively.
The average error, standard deviation of errors and the 95-percent confidence interval were
calculated for 90 and 114 experimental versus calculated points for H41NE and H41D,
respectively. These results are presented in Table 3.

14
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Table 2. Summary of Calculations

Range
of E,,g(kca1/gw..mole)

Material Wf/W0  W/W0  Friedman Flynn & Wall A(mif' n W/W.

1.19 X 1031 17.33 > 0.91
H41NE 0.795 0.98 - 0.84 62.13 62.15 49 0 .0<09

H41 0.60 .97- 079 4.9 7152 2.71 x 1015 19.46 > 0.89
H41 0760 0.7-0.7 7.977152 3.87 x 1023 6.12 < 0.89
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Table 3. Statistical Analysis of Errors in Computed
Versus Experimental W/W °

Average Standard
Error Deviation Confidence Interval

Material (%) (%) (95%)

H41NE 0.33 0.58 0.22 to 0.44

H41D 0.28 0.84 0.14 to 0.42

DISCUSSION

The average activation energies calculated by the methods of Flynn and Wall and Friedman
agree within 0.03 and 4.6 percent for H41 NE and H41 D, respectively. There was less scatter of
the data using the Flynn and Wall method. This was thought to be due primarily to the errors in
measuring the derivatives of the weight loss used in Friedman's method.

The kinetic parameters were calculated based on data that represented 68 percent of the
total weight loss for H41 D and 75 percent for H41NE. This resulted in large values of the order
of reaction and pre-exponential factor for the first region. However, Friedman's results would have
been similar to these had he considered the same range of decomposition.

In order to evaluate the effect of separating the reaction into two parts, the thermograms
were calculated for H41NE using only the kinetic parameters for W/W o < 0.91. The same
calculations were made for H41D for W/W o < 0.89. This corresponded approximately to the
region of weight loss considered by Friedman. As shown by the broken lines in Figures 25 and 26,
the calculated versus the experimental thermograms are in poor agreement.

By separating the reaction in this manner, the reaction order and pre-exponential factor
become empirical parameters that provide a "best fit" of the data. However, this method yields
an extremely accurate reproduction of the thermograms over a wide range of heating rates. This is
the desired result for kinetic parameters used in thermal models.
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APPENDIX

EXPERIMENTAL DATA
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